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1. 

Parameter variations in structures are unavoidable due to manufacturing tolerances,
assembly defects, aging, etc. Since these imperfections are frequently small, in most systems
they only produce a small perturbation in the dynamical response; hence for ease of
modelling and analysis they are frequently discarded. However, small irregularities may
have a drastic impact on a special class of engineering known as periodic structures, which
consist of identical bays connected one to another in an identical manner. The dynamics
of periodic structures have been shown to be highly sensitive to periodicity-breaking
disorder. Namely, under conditions of weak coupling between bays, small random disorder
may give rise to the occurrence of normal mode localization [1–5].

Mode localization is characterized by an asymptotic exponential decay of the vibration
amplitude along the randomly disordered periodic structure [6–8]. When analyzing this
amplitude decay, it is important that one not only examines the ensemble averages, but
also the probability distribution of the rate of decay. Surprisingly, the statistics of the
exponential decay rate of the vibration amplitude—the so-called localization factor—has
received only scant attention in the literature. Recently, Cha and Morganti [9] calculated
the statistics of the localization factor in a nearly periodic structure by utilizing
probabilistic perturbation methods. They postulated the probability distributions of the
localization factor for the cases of weak and strong localization, and verified the results
with numerical simulations. However, their study was restricted to chains of
single-degree-of-freedom bays. Castanier and Pierre [10] recently calculated localization
factors as Lyapunov exponents [4, 11], and examined their statistics numerically. However,
they used the covariance of the Lyapunov exponents as a possible indicator of conversion
among the various wave types, and not as a means of reaching conclusions about the
typical rate of exponential decay.

This note is an extension of reference [9] to more elaborate periodic structures consisting
of multi-mode bays. These systems feature several frequency passbands, and thus are
representative of many periodic engineering systems, e.g., bladed-disk assemblies.

2.  

2.1. Equations of motion
Consider the undamped assembly of N, mono-coupled, multi-mode, nearly identical

bays shown in Figure 1. Each bay is coupled to its adjacent neighbors through linear
springs of stiffness ks located at x= xc . To study vibration transmission, the system is
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Figure 1. An assembly of coupled, multi-mode bays (beams).

excited at one end by a simple harmonic force of frequency, v̄, and the steady state
response at its other end is examined. The motion of each (uncoupled) bay is written in
terms of its normal mode coordinates (corresponding to the modes of a fixed–free beam
in Figure 1). Applying component mode analysis, the governing equations of motion for
the disordered assembly are [8]
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where hi is the M-vector of modal co-ordinate amplitudes for the ith bay, M is the number
of modes for each bay, ff is the M-vector of modal deflections at the forcing location, xf ,
F0 is the forcing amplitude, M is the modal mass, [I] is the identity matrix, and [K] is the
NM×NM block tridiagonal matrix
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[A]=fcf
T
c , [Di ]= [L](1+ dli )+2[R�]fcf

T
c . (3)

In equation (3), [R�]=R�[I] (R�= ks /M) is the M×M diagonal matrix of the coupling
frequency, [L]= [diag(l�p )] is the M×M diagonal matrix of the eigenvalues of the nominal
bay (the squares of the natural frequencies of the uncoupled bays), dli is the dimensionless
disorder parameter for the ith bay, and fc is the M-vector of modal deflections at the
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constraint location, xc . The disorders, dli , are assumed to be independent, identically and
uniformly distributed random variables of mean 0 and standard deviation s. For a
perfectly periodic system, dli =0.

While the results derived herein are applicable to any mono-coupled periodic structure,
all of the numerical calculations are performed on an assembly of cantilever
Euler–Bernoulli beams (see Figure 1). Disorder is assumed to originate from discrepancies
among the flexural rigidities of the beams, (EI)i . Thus, the modal mass is M=ml, and
the component modes, fp (x), are the eigenfunctions of a cantilever beam. The equations
of motion (1) are non-dimensionalized by dividing by EI/ml4 to introduce the
dimensionless parameters R=R�/(EI/ml4)=ks /(EI/l)3, l= l�/(EI/ml4) and v2 = v̄2/(EI/
ml4).

2.2. Monte Carlo simulations
The localization factor, g, is the asymptotic rate of exponential amplitude decay per bay,

obtained by letting the number of bays N go to infinity [7, 8]. Numerically, however, g is
calculated by taking the average, over a large number of realizations r, of the decay rate
gN for disordered assemblies of finite size N.

Two Monte Carlo simulation schemes were developed to approximate the localization
factor [7, 8]. For strong coupling (when the localization is weak), a wave formulation is
adopted, in which an N-bay disordered chain is embedded in an otherwise ordered infinite
system. The N-bay decay rate is given by

gN =−
1
N

ln=tN =, (4)

where tN , the transmission coefficient for the disordered segment, is the inverse of the (1, 1)
term of the wave transfer matrix, obtained by multiplying transfer matrices for the N bays
and applying the appropriate similarity transformations [4]. Taking the average of gN over
many disordered segments allows one to obtain an approximation of the localization
factor.

For weak coupling (when the localization is strong), a modal formulation is selected,
which considers an N-bay disordered assembly with fixed–fixed end conditions. The N-bay
decay rate is then given by

gN =−
1
N

ln=fT
c [F1N ]ff =, (5)

where [F1N ] denotes the (1, N)th M×M submatrix of ([K]−v̄2[I])−1, which can be
obtained recursively by exploiting the tridiagonality nature of the [K] matrix.

The inherent difference between the above two approaches is that the modal formulation
incorporates boundary effects, while the wave approach does not. Both wave and modal
formulations can be used to describe properly the type of localization—weak or strong—at
hand.

3.      

3.1. Numerical results
To illustrate the statistical distribution of the localization factor, consider the case

R=3·0 and xc =1·0. For simulation purposes, 10 000 realizations of ten random bays
each are used for the wave simulation in the first two passbands (in order to eliminate the
effects of the boundary conditions when the decay due to disorder is weak), while 10 000
realizations of 50 random bays each are chosen for the modal simulation in the third and
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Figure 2. The probability density functions of the first mid-band localization factor for two disorder strengths
by Monte Carlo wave simulation (——) and postulated distribution based on strong coupling perturbation
method (· · ·). The system parameters are R=3·0, xc =1·0, N=10 and r=10 000. The solid and dotted vertical
lines represent the numerical and perturbation values of �gmid�, respectively. (a) s=1%; (b) s=3%.

fourth passbands. In order to simplify the analysis, only the distribution of g at mid-band
frequencies is considered.

In Figure 2 is depicted the statistical distribution of the first mid-band localization
factor, gmid . Note that in the first passband localization is weak, and that the distribution
is of exponential type for a disorder strength up to 3%. Since the distribution exhibits
rightward skewness with a large tail, the expected value alone does not reveal the possibility
of a much higher g that can occur in the tail within the ensemble. In addition, notice that
g’s less than the mean value possess higher probabilities of occurrence. Thus, for such weak
localization, the behavior of a typical system may deviate substantially from that predicted
by the mean. The average of gmid can be a misleading indicator of the expected rate of decay
in any single realization of the random medium, and care must be taken when using this
value to predict behavior. In the second passband, shown in Figure 3, the numerically
obtained distribution is again of exponential type for 1% disorder. For a disorder of 3%,
however, the exponential distribution characteristics begin to disappear, and the transition
from an exponential to a normal probability distribution can be noted. It can be shown
that as the disorder strength increases, the distribution tends to a normal one, such that
the mean of gmid becomes an order of magnitude larger than its standard deviation. Thus,
for a sufficiently large disorder, the behavior of a typical system can be predicted by that
of the mean response.
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The simulated probability density functions of the mid-band localization factor in the
third and fourth passbands are illustrated in Figure 4. Observe that the localization is
strong, and that the distribution of gmid is normal with a given variance. This implies that
the average response is indeed characteristic of how a typical disordered system will
behave. Hence, at sufficiently high frequencies, typical behavior can be predicted by the
mean localization factor, even for a very weakly disordered structure.

3.2. Standard deviation of g for weak localization
Using statistical perturbation methods, the standard deviations of g, as well as its mean,

can be approximated. For strong coupling, the approximation of the mean mid-band
localization factor is [8].

�gs
mid�2 s2a2

p'

8R2f4
p (xc )/l2

p
, (6)

where the superscript ‘‘s’’ denotes the strong coupling case. After lengthy algebra, the
corresponding standard deviation is found to be

sgs
mid

2 s2a2
p'

4z2R2f4
p (xc )/l2

p

. (7)

Figure 3. The probability density functions of the second mid-band localization factor for two disorder
strengths by Monte Carlo wave simulation (——) and postulated distribution based on strong coupling
perturbation method (· · ·). The system parameters are R=3·0, xc =1·0, N=10 and r=10 000. The solid and
dotted vertical lines represent the numerical and perturbation values of �gmid�, respectively. (a) s=1%; (b)
s=3%.
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Figure 4. The probability density functions of the third and fourth mid-band localization factor for two
disorder strengths by Monte Carlo modal simulation (——) and postulated distribution base on weak coupling
perturbation method (· · ·). The system parameters are R=3·0, xc =1·0, N=50 and r=10 000. The solid and
dotted vertical lines represent the numerical and perturbation values of �gmid�, respectively. (a) s=1%; (b)
s=3%.

Comparing equations (6) and (7), we note that for this case of weak localization:

sgs
mid

=z2�gs
mid�. (8)

The good agreement between the simulated and analytical mean of the first mid-band
localization factor in cases of weak localization is displayed in Figure 2. The distribution
of gmid appears to be exponential, and since equation (8) tells us that the mean and standard
deviation are proportional, we speculate that the actual continuous probability distribution
is of gamma type. From reference [12], the probability density function for a gamma
distribution is characterized by parameters a and b (bq 0) and given by

f(x)=g
G

G

F

f

be−bx(bx)a−1

G(a)
,

0,

xe 0,

xQ 0,
(9)

where G(a)=fa
0 e−xxa−1 dx is the gamma function. The mean and variance of the gamma

distribution are a/b and a/b2, respectively.
To validate our speculation, the postulated gamma distribution of the first mid-band

localization factor is plotted in Figure 2. The mean and standard deviation, derived using
the strong coupling perturbation method and given by equations (6) and (7), are used as
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the parameters for the postulated gamma distribution in equation (9). Note the excellent
agreement between the simulated and the postulated probability density function for a
disorder up to 3%. In the second passband (see Figure 3), the agreement between the
postulated and simulated distributions is good for a disorder of 1%. Not surprisingly, for
a 3% disorder, the postulated results no longer track the simulation solution, since the
ratio of disorder to coupling no longer satisfy the constraint under which equation (6) was
derived, namely a small disorder to coupling ratio. However, the analytical mean still
approximates the numerical value fairly well. It is interesting to note that if the simulation
mean and standard deviation were used as the parameters for the gamma distribution, then
the postulated probability density function tracks the simulation results reasonably well,
as shown in Figure 5.

3.3. Standard deviation of g for strong localization
For higher passbands, the coupling between bays decreases, the frequency bands become

widely separated, and there is limited interaction between the mode groups. Hence the bays
vibrate primarily in their uncoupled modes, and a single mode analysis is often sufficient
to capture the bahavior of the system. To the first order approximation, the average of
the mid-band localization factor is [8]

�gw
mid�2 lnb s

Rf2
p (xc )/lp b+ln z3−1, (10)

where the superscript ‘‘w’’ denotes the weak coupling case. The standard deviation of gmid

is found to be

sgw
mid

2 1/zN. (11)

Note that for this case of weak coupling or strong localization, the standard deviation
equals the inverse of the square root of the distance from the excited end, the same result
that can be inferred from reference [13]. While equation (11) is derived for a mid-band
excitation, it can be shown to remain valid for any excitation frequency.

Figure 5. The probability density function of the second mid-band localization factor for s=3% by Monte
Carlo wave simulation (——) and postulated distribution based on strong coupling perturbation method (· · ·),
obtained using the simulated mean and standard deviation. The system parameters are R=3·0, xc =1·0, N=10
and r=10 000.
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Figure 6. The probability density function of the third mid-band localization factor for s=1% by Monte
Carlo modal simulation (——) and postulated distribution based on weak coupling perturbation method (· · ·),
obtained using the simulated mean and standard deviation. The system parameters are R=3·0, xc =1·0, N=50
and r=10 000.

Inspection of Figure 4 shows that the simulated probability density function of the
mid-band localization factor appears to be normal. From reference [12], the probability
density function of a normal distribution is given by

f(x)=
1

z2pn
e−(x− m)2/2n2, aQ xQa, (12)

where the mean and standard deviation are m and n, respectively.
Using the mean and the standard deviation given by equations (10) and (11),

respectively, and derived with the weak coupling perturbation method, a normal
probability density function can be postulated for gmid . It is shown in Figure 4 that in the
third passband, for a disorder of 1%, the agreement between the analytical and the
simulated results is poor. However, if we use the simulation mean and standard deviation
as the parameters for our postulated normal distribution, then the agreement between the
simulated and postulated probability density function becomes excellent (see Figure 6). For
a disorder of 3%, note the very good agreement between the simulated and postulated
density curves in Figure 4. This is due to the fact that the perturbation approximation is
valid for large ratios of disorder to coupling. The mid-band localization factor as obtained
from the modal simulations is shown in Table 1. Note that, in a given passband, gmid

T 1

The simulated mid-band localization factor and its standard deviation for various disorder
strengths. Obtained from Monte Carlo modal simulations with r=10 000, N=50, R=3·0,
and xc =1·0. The standard deviation predicted by the perturbation method for weak coupling

is 1/z50=0·1414.

Passband number Disorder strength (%) gmid sgmid

Third 1 0·7871 0·1112
2 1·4206 0·1295
3 1·8159 0·1349

Fourth 1 2·0699 0·1360
2 2·7605 0·1389
3 3·1678 0·1398
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Figure 7. The probability density functions of the fourth mid-band localization factor, gmid , for N=50 (– – –)
and N=100 (– · –) by Monte Carlo modal simulation (——) and postulated distribution based on weak coupling
perturbation method (· · ·). The system parameters are R=3·0, xc =1·0, s=3% and r=10 000. The vertical
lines denote �gmid� for N=50 and N=100.

increases with the disorder strength, and for a given disorder, it also increases with the
passband number. Finally, note that the simulated standard deviation of gmid tends to its
analytical prediction as localization becomes stronger.

The simulated probability distribution of gmid for assemblies of 50 and 100 components
is shown in Figure 7. Again, 10 000 realizations are used. Note that the variance for
N=100 is indeed smaller than for N=50. Thus, as the number of bays becomes large,
the standard deviation becomes small compared to its mean, making the mean a good
predictor of typical response. Observe the good agreement between simulated and
postulated probability density functions.

3.4. Effect of constraint location
In reference [8] it was shown that the degree of localization depends on the ratio of

disorder to coupling, Rf2
p (xc )/lp , and that the constraint location affects the localization

factor in a given passband through the modal deflection at the constraint, fp (xc ). The effect
of the constraint location on the probability density function of gmid is illustrated in
Figure 8. The constraint location xc is very close to the node of the second component
mode, the coupling stiffness R is large, and the disorder strength s very small, yielding
small localization factors in the first and third passbands, but large gmid in the second
passband, where the component beams are nearly decoupled. Not surprisingly, the
probability distribution of gmid also reveals the same trend. In the first and third passbands,
where the localization factors are small, the probability density function of gmid is of
exponential type, indicating weak localization. In the second passband where the
localization is severe, gmid is normally distributed. Note the excellent agreement between
the simulated and postulated probability density functions in all three passbands.

4. 

Due to the random nature of the irregularities, the rate of exponential amplitude decay
for a finitely long, disordered chain is statistically distributed. Depending on the ratio of
disorder to coupling, the fluctuation of the localization factor about its mean can be large.
For small disorder to coupling ratios, localization is weak and the localization factor
approximately features a gamma distribution, with its standard deviation being z2 times
its expected value. This implies that the response of an arbitrary realization of the
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Figure 8. The probability density functions of the first three mid-band localization factors ((a), (b) and (c))
by Monte Carlo wave and modal simulations (——) and postulated distribution based on strong and weak
coupling perturbation methods (· · ·). The system parameters are R=15·0, xc =0·78, r=10 000 and s=0·2%.
For the wave simulation, N=10; for the modal simulation, N=50. The vertical line represents the simulated
�gmid�.

disordered system may deviate dramatically from predicted mean behavior. For large
disorder to coupling ratios, however, localization is strong and the localization factor is
approximately normally distributed, with its standard deviation being proportional to the
square root of chain size. Thus, for a system with many sites, the mean behavior accurately
depicts the response of a typical assembly.
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